US009317520B2

a2 United States Patent 10) Patent No.: US 9,317,520 B2
Howard et al. (45) Date of Patent: Apr. 19, 2016
(54) STATE SCOPE DATA FILE SHARING 2008/0301228 Al 12/2008 Flavin
2009/0112779 Al 4/2009 Wolf et al.
H . 2010/0305997 Al 12/2010 Ananian et al.
(71) Applicant: INTERNATIONAL BUSINESS 2011/0113210 Al 52011 Klapman et al.
MACHINES CORPORATION, 2012/0030678 Al 2/2012 Hayduchok et al.
Armonk, NY (US) 2012/0185500 Al 7/2012 Bhogal et al.
2012/0222026 Al 8/2012 Excoffier et al.
(72) Inventors: Curtiss J. Howard, Cary, NC (US); 583; 8?323‘}‘ i} 1?%83 Eavenol;let al.
: H . erg et al.
‘T;,’.‘:l‘? E. Izaglmge;} Ralslgﬁ’ II:IHC{ (gz) 2013/0066832 Al 3/2013 Shechan etal.
illiam A. Nagy, New York, NY (US) 2013/0212161 Al* 82013 Ben-Shauletal. ... 709/203
. 2014/0229438 Al* 82014 Carriero etal. 707/625
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this WO 2007128687 Al 11/2007
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 226 days.
Wang et al.; “On the Impact of Virtualization on Dropbox-Like Cloud
(21) Appl. No.: 13/954,441 File Storage/Synchronization Services”, IWQoS IEEE International
. Workshop on, Jun. 4-5, 2012, pp. 1-9.
(22) Filed: Jul. 30, 2013 R. Liu et al.; “Sharing of Recently Accessed Content “Recent Stuff”
In Social Networking Environments”, ip.com, IPCOM000223713D,
(65) Prior Publication Data Nov. 26, 2012, pp. 1-5.
US 2015/0039557 A1~ Feb. 5, 2015 (Continued)
(51) Int.CL Primary Examiner — Albert Phillips, 111
GO6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Law Office of Jim Boice
(52) US.CL
CPC oo, GOG6F 17/30174 (2013.01) (57) ABSTRACT
(58) Il:}leld of Classification Search A method, computer system, and/or computer program prod-
g one lication file f | i uct shares state scope data among client devices in a cloud-
ee application file for complete search history. based file synchronization service, where the client devices
(56) References Cited are u?termme?ntly connected to the cloqd-baseq file synch.ro-
nization service. In response to a first client device requesting
U.S. PATENT DOCUMENTS a current version of shared state scope data from a second
client device, the cloud-based file synchronization service
7,937,589 B2 5/2011 Oswald et al. transmits a request to the second client device for the updated
5’996’457 B2* 3; 2015 Sacgsft al e ;T 707/613 shared state scope data. The updated shared state scope data is
%882 /8822283 ﬁ} 3 /3882 Ef)%esrsg?e{réfta' stored in th.e cloud-based ﬁle? synchrpnization service, and
2006/0143412 Al 6/2006 Armangau then transmitted to the first client device.
2007/0101326 Al 5/2007 Cai et al.
2008/0005164 Al 1/2008 Yee et al. 2 Claims, 2 Drawing Sheets

COMPUTER
102

SYSTFE%EMORY 104 HARD DRIVE [N_q5.4.
CPERATING SYSTEM ’—L‘ D DRIVE
PROCESSOR) | rereace [-132
SHEL 0
R 2
SVSTEH BUS
APPLICATION
PROGRANS 144 L
[Eoe o] | | o0
BOWSR__146 TR
VOBILE CLOUD STATE
SCOPE SHARING L0GIC
HCSS3L)
148

- 150

SOFTWARE

ﬁ [DEPLOYING!

FRST
COMPUTER(S)

SERVER
152
SECOND DATABASE
COMPUTERIS) SERVER

US 9,317,520 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Jonathan Beri et al., “App Data” Last Edited on Jan. 4, 2011,
Opensocial Wiki, Opensocial, Retrieved Jul. 30, 2013, pp. 1-18.
Anonymous, “About Dropbox”, dropbox.com, Retrieved Jul. 30,
2013, pp. 1.

U.S. Appl. No. 13/903,130, filed May 28, 2013—Specification, 26

pages.

U.S. Appl. No. 13/904,217, filed May 29, 2013—Specification, 25
pages.
U.S. Appl. No. 13/903,174, filed May 28, 2013—Specification, 25

pages.
U.S. Appl. No. 13/904,248, filed May 29, 2013—Specification, 25

pages.

* cited by examiner

US 9,317,520 B2

Sheet 1 of 2

Apr. 19,2016

U.S. Patent

NS
ISvavLvad

<
sl

YIS
ONIAOTdA0
FHYMLA0S

4
0l

([SRALNdNOD (SRALNA0D .
aNOD3S 15414 | ‘Ol
/
Gl
avads | | Avdl viaw JNOW | | QuvogAY Tém_o_
/o / | / o/
vl Z7 ozl g1l ol
——] e EOS
C [ovaan [T (S)1s0d
L oman || e VAN
I 0/1
| om_ @m_ 1
_ o) @
|
|
| —
m A 0S80/ v o
" (15SSOm)
! 01907 INIYHS 3d00S
“ 31¥1S AnN0TD JTIGON
|
_ P ¥31dvay —
| - o =80 _Qim Mww;e_m _
_ 7 —— SAY¥O0Nd
m Zll ? > Y7 LYo
! S01 NG WILSAS —
] | Z%1 T
||||||||||||||||||||| J
_\ ! < | oF1 THS |
_ —_—
| AN JOV43INI 40SST)0Md oTol)
Z0l ! A0 QdvH WILSAS ONILYH3O
Y3INdI0D | [wm_ —
¥l
_ iy Bl AHONIN WALSAS

U.S. Patent Apr. 19,2016 Sheet 2 of 2 US 9,317,520 B2

Ry

PROVIDE A STAGING AREA FOR STATE SCOPE | ~202
DATA TO BE STORED IN A DROP-BOX

RECEIVE A REQUEST FROM A FIRST CLIENT DEVICE TO ACCESS] ~204
SHARED STATE SCOPE DATA FOR A SECOND CLIENT DEVICE

206

SECOND CLIENT DEVICE RECONNECTED?

YES

TRANSMIT A REQUEST TO THE SECOND CLIENT DEVICE FOR THE | ~20&
SHARED STATE SCOPE FILE OF THE SECOND CLIENT DEVICE

RECEIVE SHARED STATE SCOPE | ~210
DATA FROM THE SECOND DEVICE

STORE THE SHARED STATE SCOPE DATA OF THE | ~212
SECOND CLIENT DEVICE IN THE STAGING AREA

TRANSMIT THE SHARED STATE SCOPE DATA OF THE SECOND CLIENT | ~214
DEVICE FROM THE STAGING AREA TO THE FIRST CLIENT DEVICE

) 2o

FIG. 2

US 9,317,520 B2

1
STATE SCOPE DATA FILE SHARING

BACKGROUND

The present disclosure relates to the field of computers, and
specifically to computers that store state scope files. Still
more particularly, the present disclosure relates to synchro-
nizing state scope files between computers.

In normal state scope data file sharing, the state scope
changes are routed through a shared state server and then
broadcast to applicable clients, allowing all applicable clients
to process the same state scope data file. However, in amobile
environment, devices may become disconnected from the
server, thus preventing synchronization of state scope data.

SUMMARY

A method and/or computer system shares state scope data
among client devices in a cloud-based file synchronization
service, where the client devices are intermittently connected
to the cloud-based file synchronization service. In response to
afirst client device requesting a current version of shared state
scope data from a second client device, the cloud-based file
synchronization service transmits a request to the second
client device for the updated shared state scope data. The
updated shared state scope data is stored in the cloud-based
file synchronization service, and then transmitted to the first
client device.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts an exemplary computer in which the present
disclosure may be implemented; and

FIG. 2 is a high level flow chart of one or more exemplary
steps taken by one or more processors to share state scope
data among multiple devices.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.

10

15

20

25

30

35

40

45

50

55

60

65

2

In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to, wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for

US 9,317,520 B2

3

implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

With reference now to the figures, and in particular to FIG.
1, there is depicted a block diagram of an exemplary computer
102, which may be utilized by the present disclosure. Note
that some or all of the exemplary architecture, including both
depicted hardware and software, shown for and within com-
puter 102 may be utilized by software deploying server 150,
database server 152, first computer(s) 154 and/or second
computer(s) 156.

Computer 102 includes a processor unit 104 that is coupled
to a system bus 106. Processor unit 104 may utilize one or
more processors, each of which has one or more processor
cores. A video adapter 108, which drives/supports a display
110, is also coupled to system bus 106.

System bus 106 is coupled via a bus bridge 112 to an
input/output (1/0) bus 114. An I/O interface 116 is coupled to
1/0 bus 114. 1/O interface 116 affords communication with
various 1/O devices, including a keyboard 118, a mouse 120,
a media tray 122 (which may include storage devices such as
CD-ROM drives, multi-media interfaces, etc.), a printer 124,
and (ifa VHDL chip 137 is not utilized in a manner described
below), external USB port(s) 126. While the format of the
ports connected to 1/O interface 116 may be any known to
those skilled in the art of computer architecture, in one
embodiment some or all of these ports are universal serial bus
(USB) ports.

As depicted, computer 102 is able to communicate with a
software deploying server 150, a database server 152, first
computer(s) 154, and/or second computer(s) 156 via network
128 using a network interface 130. Network 128 may be an
external network such as the Internet, or an internal network
such as an Ethernet or a virtual private network (VPN).

A hard drive interface 132 is also coupled to system bus
106. Hard drive interface 132 interfaces with a hard drive 134.
In one embodiment, hard drive 134 populates a system
memory 136, which is also coupled to system bus 106. Sys-
tem memory is defined as a lowest level of volatile memory in
computer 102. This volatile memory includes additional
higher levels of volatile memory (not shown), including, but
not limited to, cache memory, registers and buffers. Data that
populates system memory 136 includes computer 102’s oper-
ating system (OS) 138 and application programs 144.

0S 138 includes a shell 140, for providing transparent user
access to resources such as application programs 144. Gen-
erally, shell 140 is a program that provides an interpreter and
an interface between the user and the operating system. More
specifically, shell 140 executes commands that are entered
into a command line user interface or from a file. Thus, shell
140, also called a command processor, is generally the high-
est level of the operating system software hierarchy and
serves as a command interpreter. The shell provides a system
prompt, interprets commands entered by keyboard, mouse, or
other user input media, and sends the interpreted command(s)
to the appropriate lower levels of the operating system (e.g., a
kernel 142) for processing. Note that while shell 140 is a
text-based, line-oriented user interface, the present disclosure
will equally well support other user interface modes, such as
graphical, voice, gestural, etc.

As depicted, OS 138 also includes kernel 142, which
includes lower levels of functionality for OS 138, including
providing essential services required by other parts of OS 138
and application programs 144, including memory manage-
ment, process and task management, disk management, and
mouse and keyboard management.

Application programs 144 include a renderer, shown in
exemplary manner as a browser 146. Browser 146 includes

5

10

15

20

25

30

35

40

45

50

55

60

65

4

program modules and instructions enabling a world wide web
(WWW) client (i.e., computer 102) to send and receive net-
work messages to the Internet using hypertext transfer proto-
col (HTTP) messaging, thus enabling communication with
software deploying server 150 and other described computer
systems.

Application programs 144 in computer 102’s system
memory (as well as software deploying server 150°s system
memory) also include a mobile cloud state scope sharing
logic (MCSSSL) 148. MCSSSL 148 includes code for imple-
menting the processes described below, including those
described in FIG. 2. In one embodiment, computer 102 is able
to download MCSSSL. 148 from software deploying server
150, including in an on-demand basis, such that the code from
MCSSSL 148 is not downloaded until runtime or otherwise
immediately needed by computer 102. Note further that, in
one embodiment of the present disclosure, software deploy-
ing server 150 performs all of the functions associated with
the present disclosure (including execution of MCSSSI. 148),
thus freeing computer 102 from having to use its own internal
computing resources to execute MCSSSL 148.

The hardware elements depicted in computer 102 are not
intended to be exhaustive, but rather are representative to
highlight essential components required by the present dis-
closure. For instance, computer 102 may include alternate
memory storage devices such as magnetic cassettes, digital
versatile disks (DVDs), Bernoulli cartridges, and the like.
These and other variations are intended to be within the spirit
and scope of the present disclosure.

With reference now to FIG. 2, a high level flow chartof one
or more steps taken by one or more processors for sharing
state information between clients is presented. After initiator
block 200, a staging area for a state scope data store is pro-
vided within a cloud-based file synchronization service. In
one embodiment, the cloud-based file synchronization ser-
vice is known as a “drop box”, which allows multiple client
devices to access a same storage file on a network. The state
scope data store resides within the cloud-based file synchro-
nization service that supports storage of a shared state scope
data file of a first client device and a second client device. In
one embodiment, the shared state scope data file describes
data entries into a shared application that is running on both
the first client device and the second client device. A shared
state scope data fileis data (e.g., map, database) that resides in
the cloud-based file synchronization service, the client
devices and/or on a server that supports the cloud-based file
synchronization service and the client devices. A data store in
the cloud-based file synchronization service stores state
information and includes rules directed to defining the type of
state information (e.g., user-wide state information, device-
wide state information, application-specific state informa-
tion) stored within the data store as well as rules directed to
defining the lifecycle of the state information (e.g., duration
of time that the state information is valid). The state informa-
tion stored in these shared state scopes can be shared among
multiple instances of an application residing on multiple cli-
ent devices.

Note that in one embodiment, the staging area is parti-
tioned to segregate state scope data that is device-specific
from state scope data that is application-specific. That is, state
scope data that is device-specific is data that describes a state
of a device, such as a particular device’s configuration,
attached resources, hibernation/power state, etc. State scope
data that is application-specific describes a state of a particu-
lar application, such as what data has been entered into or for
use by the particular application, whether the particular appli-
cation is currently minimized on a user interface, etc.

US 9,317,520 B2

5

In one embodiment, the first client device and the second
client device are intermittently connected to and discon-
nected from the cloud-based file synchronization service.
Thus, a change to a state scope data on one of the devices may
ormay not appear within the cloud-based file synchronization
service (and particularly the staging area) if a device is dis-
connected from the cloud-based file synchronization service
during the change. In one embodiment, one or both of the first
and second client devices are mobile devices. Exemplary
mobile devices include, but are not limited to, “smart” cell
phones, tablet computers, or any other mobile computing
devices. Note that mobile devices have a higher probability of
lost connectivity than a traditional client server, which in one
embodiment is assumed to be always connected.

In one embodiment, the partitioning of the staging area
defines what type of device and/or application-running device
may be accessed by a particular mobile device. For example,
a user may wish to only communicate with (and thus be
synchronized with) a device that is running a particular pro-
gram. By permitting only devices that are running this par-
ticular program to access a particular partition in the staging
area, then only updates related to that particular program will
be shared among the different client devices.

With reference now to block 204 of FIG. 2, a request is
received from the first client device to access the shared state
scope data file from the cloud-based file synchronization
service. In one embodiment, the second client device is dis-
connected from the cloud-based file synchronization service
when the request is received, and thus the shared state scope
data file may be out of date.

As described above, the second client device is discon-
nected from the cloud-based file synchronization service
when the request from the first client device arrives at the
cloud-based file synchronization service. Thus, as described
in query block 206, a determination is made as to whether the
second client is reconnected to the cloud-based file synchro-
nization service. If so, the first client device will then transmit,
via the cloud-based file synchronization service, a request to
the second client device for the shared state scope file that
describes the current state scope of the second client device
(block 208).

With reference now to blocks 210 and 212 in FIG. 2, once
shared state scope data is received from the second client
device, the shared state scope data from the second client
device is the stored in the staging area for state scope date
storage in the cloud-based file synchronization service.

In one embodiment, a conflict may arise when state scope
data is shared (i.e., shared state scope data conflicts with an
application running in multiple devices). When a conflict is
detected, the conflicting changes to the shared scope data are
then placed into a conflict file within a lock file in the staging
area. That is, the conflicting changes include a first change
from the first client device and a second change from the
second client device. In one embodiment, in response to
detecting a signal from the first client device indicating that
the first client device has authorized an abandonment of the
first change, the second change is transmitted to the first client
device from the conflict file in the lock file. Thereafter, in
response to the second change being transmitted to the first
client device, the lock file is deleted.

In one embodiment, it may not be necessary to share the
state scope data with another device. For example, assume
that the first device is merely changing a screen saver or a
background picture. In this example, there is no need to share
this change with the second device, since it does not affect the
shared state scope of the two devices. Thus, scope data
describing the change to the screen saver/background picture

10

15

20

25

30

35

40

45

50

55

60

65

6

is transmitted to the cloud-based file synchronization service,
but is not shared with other devices, even when such other
devices reconnect to the cloud-based file synchronization
service.

As described inblock 214, the shared state scope data of the
second device is transmitted from the staging area to the first
client device. In this way, the two devices both possess the
same state scope data. For example, one device is able to
communicate with a second device in order to ensure that
both devices, which are running the same application, soft-
ware, etc., have the same state scope data. The process ends at
termination block 216.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
various embodiments of the present invention has been pre-
sented for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

Note further that any methods described in the present
disclosure may be implemented through the use of a VHDL
(VHSIC Hardware Description Language) program and a
VHDL chip. VHDL is an exemplary design-entry language
for Field Programmable Gate Arrays (FPGAs), Application
Specific Integrated Circuits (ASICs), and other similar elec-
tronic devices. Thus, any software-implemented method

US 9,317,520 B2

7
described herein may be emulated by a hardware-based
VHDL program, which is then applied to a VHDL chip, such
as a FPGA.

Having thus described embodiments of the invention of the
present application in detail and by reference to illustrative
embodiments thereof, it will be apparent that modifications
and variations are possible without departing from the scope
of the invention defined in the appended claims.

What is claimed is:
1. A method for utilizing a cloud-based file synchroniza-
tion service to share state scope data among client devices, the
method comprising:
providing, by one or more processors, a staging area for a
state scope data store, wherein the state scope data store
resides within a cloud-based file synchronization service
that supports storage of a shared state scope data file of
a first client device and a second client device, wherein
the shared state scope data file describes data entries into
a shared application that is running on both the first
client device and the second client device, wherein the
staging area is partitioned to segregate state scope data
that is device-specific from state scope data that is appli-
cation-specific;
receiving, by one or more processors, a request from the
first client device to access the shared state scope data
file from the cloud-based file synchronization service,
wherein the second client device is disconnected from
the cloud-based file synchronization service when the
request is received;
in response to one or more processors detecting that the
second client device is reconnected to the cloud-based
file synchronization service, transmitting, by one or
more processors, a request to the second client device for
the shared state scope file of the second client device;

receiving, by one or more processors, the shared state
scope data file for the second client device;

storing, by one or more processors, the shared state scope

data file for the second client device in the staging area
for the state scope data store;

in response to one or more processors receiving and storing

the shared state scope data file for the second client
device, transmitting, by one or more processors, the
shared state scope data file for the second client device
from the staging area to the first client device;

in response to one or more processors detecting that the

first client device and the second client device are con-
currently attempting to make conflicting changes to the
shared state scope data file, placing, by one or more
processors, the conflicting changes into a conflict file
within a lock file in the staging area, wherein the con-
flicting changes comprise a first change from the first
client device and a second change from the second client
device;

in response to one or more processors detecting a signal

from the first client device indicating that the first client
device has authorized an abandonment of the first
change, transmitting, by one or more processors, the
second change to the first client device from the conflict
file in the lock file;

in response to the second change being transmitted to the

first client device, deleting, by one or more processors,
the lock file;

receiving, by one or more processors, a first data from the

first client device,

10

15

20

25

30

35

40

45

50

55

60

65

8

determining, by one or more processors, whether the first
data from the first client device affects a shared state
scope of the first client device and the second client
device; and

in response to one or more processors determining that the
first data from the first client device does not affect the
shared state scope of the first client device and the sec-
ond client device, blocking, by one or more processors,
storage of the first data in the staging area, wherein
blocked data from the first client device is only stored in
the first client device.

2. A computer system comprising:

a processor, a computer readable memory, and a computer
readable storage medium;

first program instructions to provide a staging area for a
state scope data store, wherein the state scope data store
resides within a cloud-based file synchronization service
that supports storage of a shared state scope data file of
a first client device and a second client device, wherein
the shared state scope data file describes data entries into
a shared application that is running on both the first
client device and the second client device, wherein the
staging area is partitioned to segregate state scope data
that is device-specific from state scope data that is appli-
cation-specific;

second program instructions to receive a request from the
first client device to access the shared state scope data
file from the cloud-based file synchronization service,
wherein the second client device is disconnected from
the cloud-based file synchronization service when the
request is received;

third program instructions to, in response to detecting that
the second client device is reconnected to the cloud-
based file synchronization service, transmit a request to
the second client device for the shared state scope file of
the second client device;

fourth program instructions to receive the shared state
scope data file for the second client device;

fifth program instructions to store the shared state scope
data file for the second client device in the staging area
for the state scope data store; and

sixth program instructions to, in response to receiving and
storing the shared state scope data file for the second
client device, transmit the shared state scope data file for
the second client device from the staging area to the first
client device;

seventh program instructions to, in response to detecting
that the first client device and the second client device
are concurrently attempting to make conflicting changes
to the shared state scope data file, place the conflicting
changes into a conflict file within a lock file in the stag-
ing area, wherein the conflicting changes comprise a first
change from the first client device and a second change
from the second client device;

eighth program instructions to, in response to detecting a
signal from the first client device indicating that the first
client device has authorized an abandonment of the first
change, transmit the second change to the first client
device from the conflict file in the lock file;

ninth program instructions to, in response to the second
change being transmitted to the first client device, delete
the lock file;

tenth program instructions to receive a first data from the
first client device,

US 9,317,520 B2

9

eleventh program instructions to determine whether the
first data from the first client device affects a shared state
scope of the first client device and the second client
device; and
twelfth program instructions to, in response to determining
that the first data from the first client device does not
affect the shared state scope of the first client device and
the second client device, block storage of the first data in
the staging area, wherein blocked data from the first
client device is only stored in the first client device; and
wherein
said first, second, third, fourth, fifth, sixth, seventh, eighth,
ninth, tenth, eleventh, and twelfth program instructions are
stored on said computer readable storage medium for execu-
tion by said processor via said computer readable memory.

#* #* #* #* #*

10

15

10

